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Abstract 

All irreducible separable representations of the non-relativistic para-Fermi field of order 3 
in the configuration space are considered. The existence of many different irreducible 
representations of the parafield permits us to interpret the excited states of this field as the 
states of particles with internal degrees of freedom. These states can be labelled by the 
Young patterns and the eigenvalues of internal quantum number like baryonic and hyper- 
charges. The parafield theory is shown to be equivalent to the theory of three kinds of 
ordinary fermions, like quarks, and one of them, 'strange', can be distinguished from the 
other two by means of its interaction, not only statistically but also dynamically. Thus the 
parafield theory is shown to be equivalent to some model of the physical SU(3) symmetry 
of hadrons when the strong and medium-strong interactions could be switched on but 
the electromagnetic and weak interactions should be switched off. 

1. Introduction 

We shall be examining a non-relativistic SchrOdinger spinor field 
~b(x,a,t), in which x, a and t mean the space, spin and time variables, 
respectively. In  what  follows we shall omit  the dependence of  functions on 
spin variables and assume that  the variable x includes also the spin 
variable and the integration implies a summat ion over the spirt variables. 
Below, the time variable is omit ted too. 

We shall quantize the field following Green (I953), in accordance with 
the Green trilinear commuta t ion  relations 

[X, [Y,Z] ]  = 2{X, Y } Z  - 2{X,Z} Y (1.1) 

Here we used a compact  symbolic form for  all the relations which are 
obtained by the substitutions o f  the creation operator,  ~k*(x), or  the annihila- 
t ion operator ,  ~O(x), for  any of  the symbols X, Y, Z. There is a double- 
commuta to r  in the left-hand side o f  equation (1.1). The braces in the 

I Postal address: Dr. A. B. Govorkov, Laboratory of Theoretical Physics, Joint 
Institute for Nuclear Research, Head Post Office P.O. Box 79, Moscow, USSR. 

Copyright �9 1973 Plenum Publishing Company Limited. No part of this publication may be reproduced,  
stored in a retrieval system) or transmitted, in any form or by any means, electronic, mechanical, photo-  
copying ,  microfilming, recording or otherwise, without written permission of Plenum Publishing Company 
Limited. 

4 49 



50 A.B. GOVORKOV 

right-hand side of equation (1. l) mean the Volkov symbols (Volkov, 1959, 
1960) that are symmetrical and take the numerical values 

{if(x), ff*(y)} = {ff*(y), if(x)} = 6(a>(x - Y)/ (1.2) 
{r r {~b*(x), r -- 0 J 

where ~Sta)(x) is the three-dimensional Dirac f-function. 
Using equations (1.1), the existence of the vacuum state, for which 

~b(x) 10> = 0 (1.3) 

is identically valid, and the positiveness of the state vector norms (Green- 
berg & Messiah, 1965) have shown that there is also 

~b(x) r = s3(a)(x - y)10> (1.4) 

where s is a non-negative integer 0, 1, 2, etc. This number defines the maxi- 
mum number of particles in the symmetrical state. For this reason the theory 
is called the para-Fermi statistics of order s and is labelled by pF,-statistics. 
Respectively, the field obeying equations (1.1) is called a parafield. It can 
be easily proved that the usual Fermi field satisfies equations (1.1) identically 
and that the Fermi statistics corresponds to the case s = 1. 

Only the Fock representation, i.e. the representation with a unique 
vacuum state, is usually considered in literature devoted to the investigation 
of  the parafield. It is considered as a unique representation convenient for 
the field theory. In reality, there are many different irreducible (separable) 
representations of equations (1.1) for para-Fermi statistics of a given order 
from a mathematical point of view (Ryan & Sudarshan, 1963). The aim of 
the present paper is the investigation and the imparting of the definite physi- 
cal meaning to the states of these new irreducible representations for the case 
of  para-Fermi statistics of order 3 (pF3). Of course, if we investigate all 
irreducible representations of a parafield we do the same for the unique 
Fock representation too. An analogous consideration was performed in the 
previous paper (Govorkov, 1969) for the case of para-Fermi statistics of 
order 2 (pF2). 

Like the Fock representation, all the new irreducible representations of 
equations (1.I) contain the states which satisfy equation (1.3). It will be 
shown below that these states will not correspond to the vacuum states but 
will correspond to one-, two-, etc., particle states. 

The existence of many different representations of equations (1.1) for 
o n e  parafield permits us to interpret its excited states as the states of particles 
with internal degree of freedom. 

The case of pF2-statistics was investigated in the previous paper (Govor- 
kov, 1969) and it was shown that it is equivalent to the usual Fermi statistics 
of  particles with two-valued internal degree of freedom like isospin. In the 
present paper we investigate the case of pFa-statistics and show its equival- 
ence to the usual Fermi statistics of particles with internal degree of  freedom 
like isospin and strangeness. At the same time, we establish the restricted 
meaning of  a connection between the parafield theory and the possible 
SU(3) theory of usual fermions. 
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In Section 2 our aim is to build all irreducible representations of equations 
(1.1) in the configuration space for the case of pFa-statistics. It will be con- 
venient to use the so-called Green-Ansatz that is some reducible representa- 
tion of equations (1.1). We build irreducible representations of equations 
(1.1) extracting them from its irreducible space. It should be taken into 
account that the Green-Ansatz is a very convenient but unnecessary tool 
for our aims and can be replaced by a pure algebraic construction, as will 
be shown below. 

In Section 3 we define the class of many-particle functions on which pF3- 
statistics is realized. These functions should be symmetrized along Young 
patterns. Then the symmetrized functions determine the probability of 
finding the paraparticles in their definite symmetrized states. 

In Section 4 we find a unitary symmetry of paraparticle states, in complet- 
ing it we again use the Green-Ansatz. We compare the parafield states with 
the states of usual Fermi field with three-valued internal degree of freedom 
in the framework of the Green-Ansatz. Then we return our consideration 
to the proper parafield theory and, in each, its irreducible representation. 
We determine an operator of hypereharge in the parafidd framework. 
Each state from the irreducible representations can be labelled by the Young 
pattern and the eigenvalue of an internal quantum number like hypercharge 
(strangeness). Then we discuss some parafield interaction which breaks up 
the unitary symmetry of parafield states. 

Remark. The inferences of Sections 2-4 allow us to resolve the question 
about the connection between the first-quantized theory of many para- 
particles and the second-quantized parafield theory. This question was 
raised in literature many times (Kamefuchi & Takahashi, 1962; Galindo & 
Indurain, 1963; Greenberg, 1966; Landshoff & Stapp, 1967; Yamada, 
1968; Carpenter, 1970; Ohnuki & Kamefuchi, 1970; Stolt & Taylor, 1970). 

In conclusion we discuss our results and compare them with the results 
of other authors. 

2. Irreducible Representations of the para-Fermi Field 

Green found in his original article (Green, 1953) a simple solution of 
equations (1.1) which is called the Green-Ansatz. It consists of the following. 
Consider an s number of different mutually commuting Fermi fields 

ffa(X) r + (26AB -- 1) CB*(y) CA(x ) = 6An 6(3)(X -- y)] 
~A(x ) CB(y) + (26a~ - 1) r ~A(x) = 0 ~ (2.1) 

Ca*(X ) CB*(y) + (26aB -- 1) CB*(y) C**(X ) = 0 

where ~AS is the Kronecker symbol and indices A and B take a value from 
the set 1, 2, ..., s. The solution of equations (1.1) is 

= # ( x ) =  #* (x )  (2.2) 
A=I A=l 
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The sums (2.2) satisfy also equations (1.3) and(1.4) and 

I1 [ [ ... I I ~(xl)~b(x2)...~O(x,+l)=0 (2.3) 

where the Young pattern I [ [ "." ] ] implies the symmetric combina- 

tion in arguments xt, Xz . . . . .  x~+l. Thus the sums (2.2) really correspond to 
the para-Fermi statistics of order s. 

We label the space of the Green-Ansatz, i.e. the Fock irreducible repre- 
sentation of equations (2.1), by ~r However, this space gives us the reducible 
representation of equations (1.1). Now our immediate task is to single the 
irreducible representations of equations (1.1) out from this large space ~4. 

To this end we consider in the space d the vectors 

Ix1,..., xo) = ~ Ya,... a~ $,A,*(X0... ~ba~*(Xq)[0) (2.4) 
A ,  . . . . .  Aq=J_ 

We choose the coefficients Yat... A~ for these vectors so that the latter should 
satisfy the requirement 

r . . . .  , x.) = 0 (2.5) 

We call the vectors (2.4) minor vectors. The vacuum vector 10) is included 
in the set of minor vectors with q = 0. 

Equation (2.5) imposes definite restrictions on the coefficients YAI... a~ of 
minor vectors (2.4). It can be shown (see Appendix) that the fulfilment of 
equation (2.5) implies the following properties of minor vectors. They 
should satisfy the equations 

$(x) $*(y)Ix1,.. . ,  x,)  = s 6'a~(x - y) Ix l , . . . ,  x,) 
- 26(a)(x - xl)[y, x2 . . . .  xq) 
m . . .  

- 26~3)(x - xa)Ix1 . . . .  , xq-1, y) (2.6) 

A minor vector with unique argument should obey 

I I I.. .  I I ( 2 . 7 )  

where the Young pattern indicates the symmetric combination in arguments 
Xt,  X2, . . .~ Xs. 

The minor vectors are antisymmetrical for the particular cases s = 2 and 
s = 3  

I x l , . . . ,  xi, x l + ~ , . . . ,  x~) = - I x ~ , . . . ,  X~+l, x~ . . . .  , x~) (2.8) 

In accordance with (2.8) the minor vectors are normalized in the following 
manner 

( x d , . . .  , x ; ,  X l'[ x ,  x2 . . . .  , x~) = ~ ,~  ,~(3)(xl - x~ 1) ,~(3)(x2 - x ; , )  

•  6~Z~(xa - x~a) (2.9) 

where the sum is taken over all q! permutations of indices 1, 2, ..., q and 6a, 
is the signature of  permutation # .  As usual, the signature is equal to +1 
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for an even number of transpositions, i.e. mutual permutations of two 
indices, and -1  for an odd number of transpositions. 

Neither of equations (2.8) and (2.9) is true for the cases s ~ 4. 
Now each irreducible representation of equations (1.1) is obtained by 

means of action of all possible products of paraparticle creation operators 
on each minor vector. The general vector of this irreducible representation is 

= f x,. . . . . .  x . ;  x .+ ,  . . . .  ,x.+,> 
p~0 

• r  g,*(xp)lxp+l . . . .  ,xp+~) (2.10) 

The arguments in the amplitudes of vectors (2.10) are split by the semi- 
colon into two clusters. The arguments standing before the semicolon are 
related to the paraparticle creation operators, $*(x~), and are called primary 
arguments. The arguments standing after the semicolon are related to the 
minor vectors and are called secondary arguments. Each irreducible repre- 
sentation of equations (1.1) is characterized by the fixed number q of 
the secondary arguments and the variable number of the primary 
arguments. 

From this point of presentation we consider only the third-order para- 
Fermi statistics. It can be proved that the number of linearly independent 
minor vectors (2.4), with fixed number of arguments q for this case in the 
space of the Green-Ansatz, is equal to q + 1. All these vectors possess the 
same characteristics (2.5)-(2.9). Therefore they determine the equivalent 
irreducible representations of equations (1.1). The minor vectors of equival- 
ent irreducible representations may be taken orthogonal to one another. 
In their turn the spaces of the irreducible representations constructed on the 
minor vectors with different numbers of arguments are orthogonal due to 
equation (2.5). Thus we split the large space of the Green-Ansatz into the 
orthogonal subspaces of irreducible representations of equation (1.1). We 
label the space of a given irreducible representation of equations (1.1) by 
~ with number q from the sequence 0, 1, 2, etc. Then we can write ou r  
decomposition of large space of Green-Ansatz into the irreducible represen- 
tations of equations (1.1) in the form of a direct sum 

.~'= @ (q + 1):~, n = {0, 1,2, . . .)  (2.11) 

In this direct sum the multipliers (q + 1) indicate the number of the equival- 
ent irreducible representations. 

Thus all irreducible representations of equations (1.1) pick out from the 
space of the Green-Ansatz. The fact that we found all separable irreducible 
representations of equations (1.1) by this manner follows from the analogy 
of the Green algebra with the algebra of a rotational group in the odd- 
dimensional Euclidean space when the dimensionality goes to infinity 
(Kamefuchi & Takahashi, 1962; Ryan & Sudarshan, 1963). The Green- 
Ansatz corresponds in the general ease of pF~-statistics to the Kroneeker 
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direct product of the number s of fundamental (spinor) representations of 
a rotational group. 

We now disengage ourselves from the Green-Ansatz. The requirements 
(2.5)-(2.9) must be postulated now as the existence of the vacuum state is 
postulated in the case of the usual Fermi field. Each irreducible representa- 
tion of equations (1.1) is determined by these requirements entirely. Thus 
we obtain the pure algebraic construction of the irreducible representations 
of equations (1. I). Of course, we have no need to consider the equivalent 
irreducible representations in this case. 

To clarify the physical meaning of the minor vectors of the irreducible 
representations we write the operator of the particle number 

N = �89 f dx[~*(x) t~(x) - @(x) ~b*(x):] (2.12) 

where we have used the notations for a normal product of operators 

:~,(x) ~*(y): = ~,(x) ~*(y) - (0[ ~(x) ~*(y) 10> (2.13) 

Due to equations (1.1) the operator N possesses all necessary properties 

[~(x), N] = ~(x), [~*(x), N] = -~*(x) (2.14) 

The action of operator N on the minor vectors gives 

N[x~ . . . .  , xq) = q Ix1,... xq) (2.15) 

Therefore the minor vectors correspond to q-particle states. There is a 
unique irreducible representation which includes the vacuum state. Other 
irreducible representations begin from one-, two-, etc., particle states. 

We dwell on the two particular features ofparastatistics in the general case 
in comparison with the usual statistics. 

The first one is that the amplitudes of the general vector (2.10) are 
expressed by the linear combinations of its projections. For example, the 
two-particle amplitude of this vector in the Fock space ~o is given by 

s 
~'(xl ,  x2;) 4(1 - 1/s) [(01 r  r  t~') 

- (1 - 2/s)(01 @(x~) r  [ 7')1 (2.16) 

There is a simple correspondence between amplitudes and projections only 
in the case of the usual Fermi statistics and second-order para-Fermi 
statistics (Govorkov, 1969). 

The second particular feature of parastatistics (including the case of the 
second order) takes into account the presence of several amplitudes, e.g. 
7J(xt, x2 ;), ~(x2, x~ ;), etc., which are differed by permutations of arguments. 

The meaning of these amplitudes is hardly comprehended. However, we 
can attach a definite meaning to these amplitudes if we symmetrize them 
along the Young patterns. Then the symmetrized amplitudes determine the 
probability of finding the particles in their definite symmetrized states. 
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We can determine the representations of the paraparticle annihilation, 
O(x), and creation, O*(x), operators on the columns of the symmetrized 
amplitudes like the Fock column. Then we could construct the total 
quantum mechanics of paraparticles and show in the non-relativistic case 
the connection between the first- and the second-quantized theories. It 
was carried out in the previous paper (Govorkov, 1969) for the case of 
pF2-statistics. We cannot include here the explicit expressions for irreduc- 
ible representations of parafield operators for the case of interest pFa- 
statistics due to the lack of space. 

3. The Fock Type Columns of the Symmetrized Amplitudes 

We now present more details concerning the structure of the irreducible 
representations of equations (1.1) for the case of pF~-statistics. 

At first we determine the crass of the many-particle functions on which 
pF3-statistics is realized. 

Due to equations (1.1) the amplitudes of the vector (2.10) have to satisfy 
the condition of permutations of their neighbouring three primary argu- 
ments 

~(x,y, z ; . . . ) -  ~(y, x ,z ; . . . ) - -  ~P(z, x, y ; . . . ) +  7t(z, y, x ; . . . ) = 0  
(3.1) 

The symmetric combination in four primary arguments vanishes in 
accordance with equation (2.3) 

[ I I I I ~ ( x , y , z , u ; . . . ) = 0  (3:2) 

Due to equation (2.7) the symmetric combination in three arguments 
vanishes in the space ~ 

~ ]  . 7 % . .  x,  y ; z )  = 0 (3.3) 

Finally, it follows from equation (2.8) that the amplitudes are anti- 
symmetrical with respect to their secondary arguments 

~( . . .  ; . . . ,  x~, xi+l . . . .  ) = - 7 % . .  ; .... xt+l, x~ . . . .  ) (3.4) 

We now limit ourselves to consideration of the states with no more than 
three particles. We then obtain the symmetrized amplitudes corresponding 
to the Young patterns indicated in Table 1. 

The symbols of the irreducible representations are indicated in the upper 
line of Table 1. The number of the equivalent irreducible representations in 
the space of the Green-Ansatz are indicated before these symbols. Below 
these symbols the Fock-like columns of the symmetrized amplitudes give 
us the corresponding irreducible representations of equations (1.1). The 
gaps in the columns indicate the absence of the corresponding symmetrized 
functions. 

There is only one Young pattern of a mixed symmetry for the three- 
particle states in the space Bo because of equation (3.1). There are two such 
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TABLE 1. Irreducible representations of the third order para-Fermi field and 
the 'quark' composition of the paraparticle states 

O 

O o~ 

,.Q 

~ o  2 ~  

I I I ! : : .  

).22 

3~2 4 ~  3 

IPn 

~ [ 2 ) , P ~ ( 2 , P P ~  (ppp] nnn 
~ 22n ~ :~nn | ppn ~2pn kpnn 

2pn {2nn 
t,~pn 

122n 

isosinglet isodoublet isotriplet isoquartet 

Irreducible representations of the internal SU(3) symmetry 
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patterns in the space &l whereas equation (3.1) is invalid for the function 
with two primary and one secondary arguments. On the other hand, owing 
to equation (3.3), only two particles can be in the symmetric state in this 
irreducible representation. 

Due to equation (3.4) the particles are not in the entirely symmetrical 
state in the space ~2. For the same reason there is only one Young pattern 
of a mixed symmetry for the three-particle states in this irreducible represen- 
tation. 

Finally, there are only antisymmetrical three-particle states in the space 
&~ because of equation (3.4). Here we stop our consideration of irreducible 
representations because the next irreducible representation should begin 
from the four particle states. 

The columns of Table 1 give us the irreducible representations of equations 
(1.1) for the case of interest pF3-statistics. We now consider the states of the 
same number of paraparticles with the same Young pattern taken across 
different columns. We can interpret the states belonging to the different 
irreducible representations as the different internal states of paraparticles. 

In the next section we establish the internal symmetry of such states and 
compare them with the states of ordinary fermions with three-valued 
internal degree of freedom. 

4. lnternal Symmetry of the Paraparticle States 

To perform the above-mentioned task it will be convenient to return to 
the decomposition (2.11) of the large space of the Green-Ansatz into the 
spaces of irreducible representations of equations (13). 

We use the following classification for the paraparticle states with the 
same Young pattern. The states belonging to the essentially different 
irreducible representations are considered as the states with different 
internal quantum-number-like strangeness. The states from the equivalent 
irreducible representations are interpreted as the states forming 'isomulti- 
plets' with the same 'strangeness', Then our classification of multiplets 
coincides with that for SU(3) symmetry. For example, we have for the 
three-particle states the following nomenclature. 

The only symmetric state forms a singlet in ~o. 
The antisymmetric states form a decouplet, consisting of an isosinglet 

in ~0, an isodoublet in 2~1, an isotriplet in 3~2, and an isoquartet in 
4~3. 

The states of mixed symmetry form an octet, consisting of one iso- 
singlet in ~'o, two isodoublets, corresponding to two independent Young 

patterns ~ and ~ 2  in 2~1, and one isotriplet in 3~z. 

We can now establish a one-to-one correspondence between the para- 
particle states and the states of the ordinary fermions like quarks with 
internal degrees of freedom like isospin and strangeness. We introduce the 
notations 2, p and n for these fermions by analogy with the ones for usual 
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quarks. The 2 particle is a strange isosinglet, the non-strange particlesp and 
n form an isodoublet. In Table 1 the corresponding 'quark' states are 
indicated on the right from the symmetrized paraparticle states which are 
presented by the corresponding Young patterns. 

Now we return to the proper parafield theory. There is no reason to con- 
sider the equivalent irreducible representations of parafield in this theory. 
It is worthwhile to consider only essentially different irreducible representa- 
tions. Then each state from the irreducible representations of the parafield 
corresponds to a whole isomultiplet of ordinary fermions. Thus the states 
from ~o correspond to isosinglets, the states from ~ t  correspond to whole 
isodoublets, etc. The theory of the para-Fermi field of order 3 is therefore 
equivalent to a theory with three types of ordinary fermions but two'ofthem, 
non-strange fermions, are dynamically indistinguishable while the third, 
strange fermion, is dynamically distinguishable from non-strange fermions. 

It turns out that the Fermi field operators corresponding to a strange 
fermion can be obtained in the framework of the proper parafield theory. 
Indeed, one can define the operators that satisfy the usual anticommutation 
relations for the Fermi field over the spaces of irreducible representations 
of the para-Fermi field. This Fermi field corresponds to the 2-fermions. Its 
creation operator is expressed in the form of an infinite set 

I f dy(a: ~,*(x) ~k*(y) ~,(y) + a2 4/*(Y) ~b*(x) tp(y) = + 

+ a3 ~b*(x)(:~p(y)~b*(y):) + a, ~/*(y)(:~/(y)~k*(x):)} + . . .  
( 4 . 1 )  

where the coefficients assume the values 

1 1 1 1 1 
a 1 = 4  2V'3 ~- 12V'5' a2 12 12V'5 

1 1 1 1 1 
aa = - 4 +  2~3  4V'5' a '  = - 4  + ~ 5  

(4.2) 

In expression (4.1) we have cited only several first terms of the infinite set 
that correspond to the states with no more than two particles. 

The annihilation operator of 2-fermions is hermitian conjugate to 
operator (4.1) 

2(x) = (2*(x))* (4.3) 

(For a one-level system it was shown (Govorkov, 1971) that the Fermi 
operators can be defined by means of para-Fermi operators in the cases of 
odd-order parastatistics and it cannot be done in cases of even-order 
parastatistics.) 

Now we can introduce the following operators whose eigenvalues deter- 
mine a state of paraparticles. 

Firstly we can introduce an operator similar to the baryonic charge. It is 
simply proportional to the particle number operator (2.12) 

B = �89 (4.4) 
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Secondly we can define an operator similar to the hypercharge with the 
help of operator (4.1). But in accordance with (4. l) it is expressed in the 
form of the infinite set 

r = B - f dx2*(x) 2(x) 

= - ~  f dx{,p*(x),p(x) + (:r 

- f  dx f dy{AO*(x) ~b*(y) ~,(y) ~b(x) 

11o ~,*(x) ~,*(y) ~p(x) ~,(y) + ~$*(x) (:r r $(x) 
-~r (:~,(x) ~,*(y):) r + . . .  (4.5) 

Thus any state in the irreducible representations of parafield ~o, ~'1, :M2, 
etc. can be labelled by the eigenvalue of the 'baryonic' charge B, by the type 
of the Young pattern and by the eigenvalue of the 'hypercharge' Y. But we 
cannot introduce the 'isospin' operators in the parafield theory in accord- 
ance with the foregoing indistinguishability of the equivalent irreducible 
representations of parafield. 

Now we consider possible interactions of parafield. 
Hitherto we considered the non-relativistic SchrOdinger spinor field. It is 

necessary to proceed to the relativistic Dirac field for the consideration o f  
parafield interactions. The transition consists in a few formal alterations. 
Now the field Ip(x) is the Dirac field depending on the four-dimensional, 
space and time, variables x. For the free field the operator $(x) contains the 
annihilation operators of paraparticles and the creation operators of anti- 
parapartMes. On the contrary, the Dirac-conjugate operator ~(x) contains 
the creation operators of paraparticles and the annihilation operators of 
anti-paraparticles. The Dirac three-dimensional 3-function should be 
changed by the well-known covariant S-function for the Dirac field in the 
Green commutation relations (1.1) and in other expressions. The integration 
over the volume should be changed by the integration over the space-like 
hypersurface. Finally, the normal product should be taken for all products 
of the field operators. As usual, the normal product of the field operators is 
defined as a product with the subtraction of its vacuum expectation. 

We shall demand a locality from parafield interactions and from currents 
entering them. It means that the equal-time commutator of the considered 
quantities of the currents, for example, should be equal to zero 

[J(x),j(Y)]xo=yo = 0 (4.6) 

We shall call the interaction 'strong' if it includes the 'baryonic' current 
in the form of the commutator of a parafield 

LB(x )  = ~[:/~(x) ~ ~p(x): - : r  ~,~ ~ (x ) : ]  (4.7) 

The locality of this current is easily proved either by means of the Green- 
Ansatz (Greenberg & Messiah, 1965) or by direct application of the Green 
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algebra when commutator (4.7) acts on the states of the irreducible represen- 
tations of parafield. The inclusion of the 'strong" interaction may lead to 
different unitary multiplets being separated from one another, but it does 
not split the states belonging to the same unitary multiplet. 

However, one can construct the other local current by means &the Fermi 
operators (4.1 and 4.3) taken in their relativistic forms 

j .~(x) = :I(x)~,. ;~(x): (4.8) 

We shall call the interaction which includes this current 'medium-strong'. 
It breaks the internal unitary symmetry of parapartMe states. Indeed, the 
'strange' fermion 2 is dynamically distinguished by this interaction with 
respect to 'non-strange' fermions p and n. 

It must be emphasised that the 'strong' and 'medium-strong' interactions 
are formulated in the framework of the proper parafield theory. They work 
inside each irreducible representation of parafield. 

If we want to consider the 'electromagnetic' violation of the internal 
symmetry of paraparticle states, then we should introduce an interaction 
which breaks the indistinguishability of the equivalent irreducible represen- 
tations of parafield. Further, if we want to consider the transitions between 
the internal states of paraparticles owing to the 'weak' interaction, then we 
should introduce an interaction which works between the irreducible 
representations of parafield. Both of them cannot be introduced in the 
framework of the proper parafield theory. 

These latter interactions can be introduced by the consideration of a 
parafield theory in the large space of the Green-Ansatz. However, the latter 
theory is virtually the theory of three different parafields. Indeed, we can 
determine by means of the Green-components satisfying (2.1) two other 
linear combinations besides the usual sum 

f 
(x) = ~")(x)  + ~(2)(x) + O(3)(x) ] 

(x) = k~pm(x) + fzr + r ~ (4.9) 
| 

(x) = ~:6('(x) + k6(2'(x) + r 
[ 

where k = exp(2ni/3),/~ is complex conjugate to k. The two latter auxiliary 
combinations in (4.9), as well as the former sum in (4.9), satisfy equation 
(1.1) and are the parafields too. 

Thus we conclude that the theory of proper para-Fermi feld of order 3 
is equivalent to the theory of SU(3) symmetry of three kinds of fermion, 
like quarks, with internal degrees of freedom like isospin and strangeness. 
But each parafield state corresponds to the whole isomultiplet of these 
fermions and one can introduce the 'strong' and 'medium-strong' interac- 
tions but cannot introduce the 'electromagnetic' and 'weak' interactions 
in the framework of the parafield theory. 

We add that one can constitute an interaction which breaks the law of 
conservation of parapartMes with the help of the Fermi field (4,1) and other 
usual Fermi fields. It is curious that this interaction could break only the 
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law of strange particle number conservation. Thus the law of the 'conserva- 
tion of statistics' obtained by Kamefuchi & Strathdee (1963) and Greenberg 
& Messiah (1965) has, in our opinion, a restricted meaning. 

5. Conclusion 

We have considered an ensemble of all separable irreducible representa- 
�9 tions of para-Fermi field of order 3 in the configuration space. 

It was shown that these symmetrized along the Young pattern state, 
belonging to the irreducible representations of the parafield, can be labelled 
by the eigenvalues of the operators that are similar to baryonic charge and 
hypercharge. 

It turns out that one Fermi field operator can be defined in the framework 
of the parafield theory. 

We arrived at the conclusion that such a theory is equivalent to the limited 
theory of SU(3) symmetry of three kinds of usual fermions, like quarks, 
with internal degree of freedom like isospin and strangeness. The limitations 
of this comparison lies in the fact that, firstly, each parafield state corre- 
sponds to whole isomultiplet of the fermions, and, secondly, only the 
'strange' fermion can be dynamically distinguished from other 'nonstrange' 
fermions in the framework of the parafield theory. 

Thus, the considered theory appears as some model of the theory of 
SU(3) symmetry of physical elementary particles whose strong and 
medium-strong interactions which conserve baryonic and hyper-charges 
are switched on but the electromagnetic and weak interactions are switched 
off. For switching on these latter it is necessary to consider distinguishability 
of equivalent irreducible representations and transitions between irreducible 
representations of the parafield. It is impossible to do in the framework of the 
proper parafield theory. 

It follows from the previous consideration (Govorkov, 1969) of a theory 
of the second order para-Fermi field that this latter corresponds to some 
model of the theory of SU(2)(isospin) symmetry of physical particles like 
protons and neutrons whose strong and electromagnetic interactions are 
switched on but the weak interaction is switched off. 

The connection between parafield theory and a theory of usual fields with 
internal degrees of freedom was considered by many authors (Green, 1953; 
Chernikov, 1962; Landshoff & Stapp, 1967; Carpenter, 1970; Driihl et al., 
1970). But Landshoff & Stapp (1967) and Drtihl et al. (1970) asserted that 
the para-Fermi field theory is equivalent to a theory of several types of 
ordinary fermions that are dynamically indistinguishable. It follows from 
the results of the present paper as well as from the previous paper (Govorkov 
1969) that the latter assertion is not true at least for the cases of para-Fermi 
fields of order 2 and 3. In these cases we composed local interactions which 
distinguished one of these kinds of ordinary fermions from the others. 

Further, Kamefuchi & Strathdee (1963) and Greenberg & Messiah (1965) 
concluded that the requirement of locality of a parafield interaction means 
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the 'conservation of statistics'. We showed that it was not true for the para- 
Fermi field of order 3, if we composed the interaction of an ordinary Fermi 
field with the Fermi field which can be defined in the framework of the 
para-Fermi field theory. It is curious that the conservation of the number of 
only 'strange' fermions could break down. 

There are many papers in literature (Kamefuchi & Takahashi, 1962; 
Galindo & Indurain, 1963; Greenberg, 1966; Landshoff & Stapp, 1967; 
Yamada, 1968; Carpenter, 1970; Ohnuki & Kamefuchi, 1970; Stolt & 
Taylor, 1970) devoted to the investigation of the connection between the 
first- and second-quantized theories for parafield. 

The reduction of the para-Fermi statistics to the ordinary Fermi statistics 
allows us to simplify this problem. Thus, for example, many authors empha- 
sized that there is a distinction between the 'particle permutations' and the 
'place permutations' in the theory of paraparticles (Landshoff & Stapp, 
1967; Yamada, 1968; Ohnuki & Kamefuchi, 1970; Stolt & Taylor, 1970). 
Now it is clear that the 'particle permutations' imply the permutations of the 
corresponding ordinary fermions whereas the 'space permutations' 
correspond to the permutations of the fermion states without permutations 
of their internal states. Under the latter permutations the identical fermions 
could find themselves in the same state and the wave function vanishes. The 
latter led to the paradox of the parafield (Galindo & Indurain, 1963). 

Finally, there was an alluring attempt to apply the para-Fermi statistics 
of order 3 to the physical quarks in the connection with the problem of the 
symmetry of their ground state in baryons in the quark model of hadrons 
(Greenberg, 1964). 'Now we can see that this suggestion is equivalent to the 
assumption of a new SU(3)' symmetry for the quarks with the above- 
mentioned limitations of its violations. Thus, for example, if we consider 
only the Fock representation of a parafield (the first column of the Table 1) 
then it corresponds to the consideration of only the isosinglets of the new 
SU(3)' symmetry. If we consider only symmetrical three-particle state, as 
proposed for baryons (Greenberg, 1964), then it corresponds to the con- 
sideration of only unitary singlet of the new SU(3)' symmetry. Thus we have 
no new matter as paraquarks but we have the old quarks with a new limited 
internal SU(3)' symmetry. 

In conclusion we remark that there is another attempt to relate the para- 
fields to the internal symmetries of elementary particles which is based on 
the matrix representation of fields (Scharfstein, 1968, 1969). 
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Appendix 

In the present Appendix we prove the properties (2.6)-(2.8) of minor 
vectors in the framework of the Green-Ansatz. 
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It can be proved that the requirement (2.5) implies the following restric- 
tions on the coefficients of minor vectors 

~ Ya~a2...A~=0 
AI=I  

.s 

~aIA~YA,A2...A, = 0 
A2=l 

I ~ A I A e ~ A ~ A * "  " " ~ A ' t - I A e Y A I A 2 "  " " A q  ~ 0 
Ae=l 

(A.1) 

where we designated eaB= 26An - 1. 
Firstly, we prove equation (2.6). Using (2.1), (2.2) and (2.4) we have 

~(x) ~*(y)Ix1,. . . ,  xq) 

A X B* AI* Ya, . . . a ,~  ( )O (Y)0 (Xl)...OA'*(X~)[0) 
A,  B, 

A 1,, - �9 �9 A~=I 

= s6(3)(x - y)[X 1 . . . . .  Xq)  (A.2) 

i = l  A , B ,  
A 1, . . . ,Aq~l  

~ A B  ~ A A  I " " " ~ A A t -  1 

x 6AA,YA,... A, OB*(Y) OAI*(Xl)... ~,m-l*(X,_l) 

X @ A / + I * ( X / + I ) . . .  @ A ' * ( X q ) [ 0 ) }  

Let us consider the expression in the braces in the right-hand side of (A.2) for 
fixed i. We write CAB = 2gas -- 1 and then sum up over A and B. We arrived at 

2(-1) I ~ ca,A, �9 �9 eA,_,a, YA,... A, ~&*(Y) 
A I, . . . ,  Aq=l 

x OA,*(Xl)... OA, -,*(x,_l) 

- (-1) '  ~ [A,~I eA,A,.. �9 8A,_,A, YA,...A,] 
A I , . . . , A t - I , A I §  1 . . . .  ,A~=i  

• ~,a*(y) ~"q*(xl). . .  ~bA'-I*(X,-I) ~b a'+'*(xt+0. �9 �9 OA'*(X,)10) 

(A.3) 
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When the operator ~A,,(y) is moved to its own place the former sum from 
(A.3) gives us 

-2Ix1,. �9 x H ,  y, x~+l,..., xq) (A.4) 

The latter sum in (A.3) vanishes because the expression in the square 
brackets is equal to zero due to the ith equation of (A. 1). Equations (A.2) 
and (A.4) result in (2.6) that is sought for. 

Now we prove equation (2.7). Using the definition of the symmetric 
combination and equations (2.2) and (2.4) we write 

I I I . .  l 1 

where the sum in the braces is taken over all s! permutations, ~ ,  of the 
indices l, ..., s. In fact only the terms with different indices A1 • A2 -~ ... :~ As 
give the contributions to the sum because the terms with equal at least two 
indices vanish due to equations (2.1). Thus one can write the right-hand 
side of equation (A.5) as 

The first multiplier is equal to zero because of the first equation (A.1)~ 
Thus equation (2.7) has been proved. 

It remains to prove equation (2.8) for the particular cases of s = 2 and 
s = 3 .  

Let us consider any couple of neighbouring equations, for example, 
( i -  1)th and ith, from equations (A.1). We pick out the terms with the 
identical indices A~ = A H  and designate the indices A~ and A,_I by A and 
B, respectively, in the first equation and, on the contrary, by B and A in 
the second equation. It yields 

~AIA " ' ' S A I _ 2 A Y A I . . . A A , . , A  ~ 

B~I 
(BV:A) 

F'AIB" �9 �9 ~At_2BYA1. . .BA , .  . Aa = 0 

- - ~ A I A ' ' ' ~ A I _ 2 A  Y A I . . . A A . . . A  q 

B = I  
(B~/= A) 

~AtB ' ' ' ~ A j _ 2 B Y A t , . .  AB. . .Aq ' -~O.  

(A.7) 

Under summation it leads to 

ealB'' .SA,_2BCaB=O, A = 1 ,2 , . . . , s  (A.8) 
(B ~A )  
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